Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37855864

RESUMO

RATIONALE: Neuropsychiatric disorders such as depression are characterized in part by attention deficits. Attention is modulated by the serotonin (5-HT) neurotransmitter system. The 5-HT2A agonist and hallucinogen psilocybin (PSI) is a promising treatment for disorders characterized by attention changes. However, few studies have investigated PSI's direct effect on attention. OBJECTIVE: Using the rodent continuous performance task (CPT), we assessed PSI's effect on attention. We also evaluated the impact of 5-HT2A receptor agonist TCB-2 and antagonist M100907 for comparative purposes. METHODS: In the CPT, mice learned to distinguish visual targets from non-targets for milkshake reward. Performance was then tested following injections of PSI (0.3, 1, and 3 mg/kg), TCB-2 (0.3, 1, and 3 mg/kg), or M100907 (0.1, 0.3, and 1 mg/kg). Subsequently, drug effects were then evaluated using a more difficult CPT with variable stimulus durations. Mice were then tested on the CPT following repeated PSI injections. Drug effects on locomotor activity were also measured. RESULTS: In the CPT, all three drugs reduced hit and false alarm rate and induced conservative responding. PSI also reduced target discrimination. These effects were seen primarily at doses that also significantly reduced locomotor activity. No drug effects were seen on the more difficult CPT or following repeated PSI injections. CONCLUSIONS: Psilocybin, TCB-2, and M100907 impaired performance of the CPT. However, this may be in part due to drug-induced locomotor changes. The results provide little support for the idea that psilocybin alters visual attention, or that 5-HT2A receptors modulate this process.

2.
Behav Brain Res ; 447: 114438, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059187

RESUMO

Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5 mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5 mg/kg, whereas operant responding was reduced at 1 mg/kg. At a much lower dose range lorcaserin 0.05-0.2 mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by the fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.


Assuntos
Receptor 5-HT2C de Serotonina , Serotonina , Animais , Masculino , Camundongos , Comportamento Impulsivo , Camundongos Endogâmicos C57BL , Recompensa , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
3.
Psychopharmacology (Berl) ; 237(12): 3689-3702, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32840668

RESUMO

RATIONALE: Environmental stimuli paired with alcohol can function as conditioned reinforcers (CRfs) and trigger relapse to alcohol-seeking. In animal models, pharmacological stressors can enhance alcohol consumption and reinstate alcohol-seeking, but it is unknown whether stress can potentiate the conditioned reinforcing properties of alcohol-paired stimuli. OBJECTIVES: We examined whether the pharmacological stressors, the α-2 adrenoreceptor antagonist yohimbine (vehicle, 1.25, 2.5 mg/kg; IP) and the K-opioid receptor agonist U50,488 (vehicle, 1.25, 2.5 mg/kg; SC), increase responding for conditioned reinforcement, and if their effects interact with the nature of the reward (alcohol vs. sucrose). We subsequently examined the effects of yohimbine (vehicle, 1.25, 2.5 mg/kg; IP) on responding for sensory reinforcement. METHODS: Male Long-Evans underwent Pavlovian conditioning, wherein a tone-light conditioned stimulus (CS) was repeatedly paired with 12% EtOH or 21.7% sucrose. Next, tests of responding for a CRf were conducted. Responding on the CRf lever delivered the CS, whereas responding on the other lever had no consequences. In a separate cohort of rats, the effects of yohimbine on responding just for the sensory reinforcer were examined. RESULTS: Both doses of yohimbine, but not U50,488, increased responding for conditioned reinforcement. This enhancement occurred independently of the nature of the reward used during Pavlovian conditioning. Yohimbine-enhanced responding for a CRf was reproducible and stable over five tests; it even persisted when the CS was omitted. Both doses of yohimbine also increased responding for sensory reinforcement. CONCLUSIONS: Yohimbine increases operant responding for a variety of sensory and conditioned reinforcers. This enhancement may be independent of its stress-like effects.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Etanol/farmacologia , Esquema de Reforço , Sacarose/farmacologia , Ioimbina/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Analgésicos não Narcóticos/farmacologia , Animais , Condicionamento Clássico/fisiologia , Masculino , Ratos , Ratos Long-Evans , Reforço Psicológico
4.
Psychopharmacology (Berl) ; 236(6): 1875-1886, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30694374

RESUMO

RATIONALE AND OBJECTIVES: Adolescence is a sensitive period of brain development, during which there may be a heightened vulnerability to the effects of drug use. Despite this, the long-term effects of cannabis use during this developmental period on cognition are poorly understood. METHODS: We exposed adolescent rats to escalating doses of Δ9-tetrahydrocannabinol (THC)-the primary psychoactive component of cannabis-or vehicle solution during postnatal days (PND) 35-45, a period of development that is analogous to human adolescence (THC doses: PND 35-37, 2.5 mg/kg; PND 38-41, 5 mg/kg; PND 42-45, 10 mg/kg). After a period of abstinence, in adulthood, rats were tested on an automated touchscreen version of a paired-associates learning (PAL) task to assess their ability to learn and recall object-location associations. Prepulse inhibition (PPI) of the startle response was also measured at three time points (5 days, 4 months, and 6 months after exposure) to assess sensorimotor gating, the ability to filter out insignificant sensory information from the environment. RESULTS: Compared to rats exposed to vehicle alone, rats exposed to THC during adolescence took longer to learn the PAL task when tested in adulthood, even when trials contained visually identical stimuli that differed only in location. Despite this, no differences were observed later in testing, when trials contained visually distinct stimuli in different locations. Rats exposed to THC also displayed impairments in sensorimotor gating, as measured by prepulse inhibition of the startle response, though this deficit did appear to decrease over time. CONCLUSION: Taken together, THC exposure during adolescence produces long-term deficits in associative learning and sensorimotor gating, though the impact of these deficits seems to diminish with time. Thus, adolescence may represent a period of neurocognitive development that is vulnerable to the harms of cannabis use, though the stability of such harms is uncertain.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Aprendizagem por Associação de Pares/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Fatores Etários , Animais , Alucinógenos/farmacologia , Masculino , Aprendizagem por Associação de Pares/fisiologia , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Long-Evans , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...